Perceptual Learning and Pattern Recognition to Cultivate “Gut Instincts”

June 6th, 2011

The Times has an interesting piece about a new methodology of teaching students that is bottom-up, rather than top-down.

For years school curriculums have emphasized top-down instruction, especially for topics like math and science. Learn the rules first — the theorems, the order of operations, Newton’s laws — then make a run at the problem list at the end of the chapter. Yet recent research has found that true experts have something at least as valuable as a mastery of the rules: gut instinct, an instantaneous grasp of the type of problem they’re up against. Like the ballplayer who can “read” pitches early, or the chess master who “sees” the best move, they’ve developed a great eye.

Now, a small group of cognitive scientists is arguing that schools and students could take far more advantage of this same bottom-up ability, called perceptual learning. The brain is a pattern-recognition machine, after all, and when focused properly, it can quickly deepen a person’s grasp of a principle, new studies suggest. Better yet, perceptual knowledge builds automatically: There’s no reason someone with a good eye for fashion or wordplay cannot develop an intuition for classifying rocks or mammals or algebraic equations, given a little interest or motivation.

These quick, snap judgments are so important, and inform so many of my discussions. While people mock my ADD supertasking mentality where I do a lot of things at once, I find that I am able to look at a lot of different things, and almost instinctively, figure things out very quickly. No doubt I make mistakes, and sometimes have a shoddy response, but the key is speed.

Experts develop such sensitive perceptual radar the old-fashioned way, of course, through years of study and practice. Yet there is growing evidence that a certain kind of training — visual, fast-paced, often focused on classifying problems rather then solving them — can build intuition quickly. In one recent experiment, for example, researchers found that people were better able to distinguish the painting styles of 12 unfamiliar artists after viewing mixed collections of works from all 12 than after viewing a dozen works from one artist, then moving on to the next painter. The participants’ brains began to pick up on differences before they could fully articulate them.

Specifically, the ability to quickly and efficiently recognize patterns allows me to devise an answer while others are still starting to research.

Which is the whole idea: Subtle shortcuts are the very stuff of perceptual intuition. With practice, neurons in the visual cortex and elsewhere specialize to identify these signature patterns, and finding them frees up mental resources for deductive reasoning, to check answers or to move on to harder problems. Such perceptual intuition isn’t cheating — it’s what the big-shot experts do. In the case of graphs and equations, it includes making quick judgments about where lines should intercept the axes and about their slope, even when that is not at all obvious.

These are the kind of fast-paced, quick thinking exercises I would try to incorporate into my lesson plans.

Ideally, perceptual training does more than breathe life into abstract principles, the same way that repairing engines instills a lived experience of internal combustion mechanics. It also primes students to apply the principles in other contexts. This ability to transfer, as it’s known, is fundamental to scientific reasoning and is among the highest goals of teachers at all levels.

This closing paragraph is really the clincher, and recognizes how today’s generation operates.

In an education system awash with computerized learning tools and pilot programs of all kinds, the future of such perceptual learning efforts is far from certain. Scientists still don’t know the best way to train perceptual intuition, or which specific principles it’s best suited for. And such tools, if they are incorporated into curriculums in any real way, will be subject to the judgment of teachers.

But researchers are convinced that if millions of children can develop a trained eye for video combat games and doctored Facebook photos, they can surely do the same for graphs and equations.


H/T Lyrissa Lidsky